

- 1. Class / Concept Description
- 2. Mining Frequent Patterns, Associations, and Correlations
- **3.** Classification and Regression for Predictive Analysis
- 4. Cluster Analysis
- 5. Outlier Analysis

(Kinds of Patterns that can be mined)

3. Classification and Regression for Predictive Analysis

- Classification is the process of finding a model that describes and distinguishes data classes or data concepts
- The model are derived based on the analysis of a set of training data. This model is used for predicting the class label of unknown dataset.

Ex:	80	80	80	Excellent
	70	70	70	Very Good
	60	60	60	Good
	90	80	90	Excellent
	75	70	60	Very Good
	60	62	61	Good
	65	61	62	Unknown?
	82	80	85	Unknown?

- **3. Classification and Regression for Predictive Analysis**
- **Examples :**
- Emails classification based on types (Binary classification two labels)
- **Designation of faculty (Multi-label classification more than one label)**
- **Grade of students -??**
- **Pass result of student ??**

- **3. Classification and Regression for Predictive Analysis**
- **Binary classification refers to predicting one of two classes**
- Multi-class classification involves predicting one of more than two classes.
- "Classification refers to a <u>predictive modeling problem</u> where a class label is predicted for a given example of input data"

- **3. Classification and Regression for Predictive Analysi**
- **Regression:**
- Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent (target) and independent variable (s) (predictor).
- **Ex: y** = **mx**+**c** (**linear regression**)
- The main difference between them is that the output variable in regression is numerical (or continuous) while that for classification is categorical (or discrete).

- **3. Classification and Regression for Predictive Analysis**
- **Key steps for finding the classification model**
- 1. Learn or train the data
- 2. Build the model
- 3. Classify the unknown test data

3. Classification and Regression for Predictive Analysis Learning step:

	Training	data		Classification algorithm
name	age	income	loan_decision	
Sandy Jones	youth	low	risky	
Bill Lee	youth	low	risky	
Caroline Fox	middle_aged	high	safe	
Rick Field	middle_aged	low	risky	
Susan Lake	senior	low	safe	Classification rules
Claire Phips	senior	medium	safe	
Joe Smith	middle_aged	high	safe	
				IF age = youth THEN loan decision = risk
				IF income = high THEN loan_decision = so IF age = middle_aged AND income = low THEN loan_decision = risky

3. Classification and Regression for Predictive Analysi Classification Step:

- **3. Classification and Regression for Predictive Analysi Classification Step:**
- **Unknown tuples**
- (ramu, youth, high) = ?
- (gopi, senior, high)=?
- (karan, middle, low)=?
- (bhavitha, middle, high)=?
- (arun, senior, low)=?

- 3. Classification and Regression for Predictive Analysis (Contd..)
- **Forms of Classification**
- 1. IF-THEN Rules
- 2. Decision Tree
- 3. A Neural Network

3. Classification and Regression for Predictive Analysis (Contd..)

(a)

Prepared By : Dr K RAJENDRA PRASAD, PROFESSOR, DEPT. OF CSE , RGMCET (Autonomous), Nandyal

(ESTD-1995)

- 3. Classification and Regression for Predictive Analysis (Contd..)
- Regression is used for predicting the any missing value or unavailable numerical data rather than class labels

Ex:

- GDP in 'current year' will have effect on vehicle sales 'next year'
- X=GDP of the previous year Y= Sales of Current Year
- Predicting the sales of current year based on GDP of previous year Y=mX+c ,
- In model creation of regression, regression coefficients 'm' and 'c' are derived

Cluster Analysis

- **Clustering analyzes data objects without consulting class labels.**
- "The objects are clustered or grouped based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity"

Cluster Analysis

Outlier Analysis : Objects do not comply with the general behavior of the system or existing clusters- those objects are referred to as outlier

Possible Questions

- 1. Define classification.
- 2. Distinguish between classification and regression.
- **3.** What are the key steps of classification process.
- 4. Write the sample examples of classification
- 5. Write an example of regression
- 6. Define clustering process
- 7. What are the important principles of clustering?
- 8. How the clustering process is different from classification process?
- 9. Describe the clustering process with an example.
- **10. Describe outlier analysis**

Thank You

Prepared By : Dr K RAJENDRA PRASAD, PROFESSOR, DEPT. OF CSE , RGMCET (Autonomous), Nandyal